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1. Introduction. 

In this paper a circular island in a sea of salt water is considered. 
The soil is composed of three layers, a top layer of sand with dunes 
emerging out of the sea, below this one a horizontal and infinitely thin, 
semi pervious layer, resting on a half space of sand. The top layer and 
the half space are well pervious to water, homogeneous and isotropic. 

A part of the rainfall on the island flows off sideways into the sea, 
another part of it filters through the semi pervious layer, under which a 
bubble of fresh water is maintained, enclosed by salt water. The bubble 
is situated partly under the dunes and partly under the sea. The fresh 
water floats on the salt water like an iceberg does in the ocean, when 
flow effects are neglected. 

Fresh water can be withdrawn above or below the semi pervious layer. 
In the first case the surface of the ground water (phreatic surface) will 
fall rapidly and substantially, by which the vegetation is threatened [i]. 
In the second case, when water is abstracted below the semi pervious 
layer, the phreatic surface will fall less and more gradually. But now 
the boundary between the fresh and salt water (boundary of salt) comes 
nearer to the island, by which it is possible that salt water is abstracted 
[1]. 

The last mentioned way of abstracting fresh water will be discussed in 
this paper. The steady flow is investigated. 

2. Formulat ion  o f  the prob lem.  
A cylindrical coordinate system (y, r, ~) is chosen (fig.2.iJ. The 

Fig. 2 .1 .  Cross section of the island 
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(r, 9) plane coincides with the semi pervious layer (If), the y-axis is the 
axis of rotational symmetry of our problem, which is independent of 4. 

The bubble of fresh water is situated below layer II in the half space 
(III) of well pervious sand. The radius of the bubble is denoted by d, the 
depth by h = h(r) < 0. Above the semi pervious layer is a layer of sand 
(I), with fresh water (density I) for r4d and with salt water for r>d, 
having a density 1 + 7, where T = 0. 024. In the dunes the fresh water is 
bounded by the phreatic surface, the height of it is denoted by ~7=U(r). 
The sea stretches on layer I for r)l, where 1 represents the radius of the 
island, and is assumed to be a shallow one. 

The fresh water will be abstracted at r = b below the semi pervious 
layer. The total amount of water which is withdrawn is 2~bQ units of 
volume per unit of time. The interval of values of r with 0<r<b is called 
regionA, the intervalb<r<l region B and region C is the interval l<r<d. 

The fresh water which filters through layer II downwards is partly ab- 
stacted and partly pressed upwards out of the bubble in region C. The 
latter part is carried off by the shallow sea together with the fresh water, 
which flows off sideways above the semi pervious layer. The salt water 
which surrounds the fresh water, is assumed to be at rest. No account 
is taken of low tide and high tide, for the sea-level we take an average 
value y = z. 

Since the slopes of the phreatic surface and the boundary of salt will be 
small, the velocity of the fresh water is supposed to be horizontal and 
independent of y in the seperate layers I (for r<l) and III. 

The potential p at a certain point is defined as the elevation to which 
fresh water would rise in an open tube sunk to the point in question, the 
elevation being measured from the sea-level. 

The filtration velocity v equals the amount of ground water passing a 
unit of area perpendicular to the direction of flow per unit of time in the 
direction of flow ([2], page Ii). The actual mean velocity of the water 
in the pores of the-sSil is much higher and depends on pore volume and 
on the structure of the soil. The filtration velocity in layer I for r<l and 
in layer IIl satisfies Darcy's law ([2], page 13; [4], page 14), which be- 
comes here 

v = - k d~P, (2.~) 
s 

where the permeability coefficient k characterizes the soil. 
Since the velocity is assumed to be horizontal, the potential in layer I 

for r<l and in layer III within the bubble of fresh water is independent of 
y. Hence the potential equals U-z in the first region and T(z-h) in layer 
III. The potential is assumed to vanish in layer I for l<r<d, so that in 
this region the pressure difference needed for the vertical movement of 
the fresh water, and the difference of the densities of the fresh and the 
salt water in the shallow sea are neglected. 

A discontinuity in the height of the phreatic surface, N, and the depth 
of the boundary of salt, h, must be preculed in connection with Darcy's 
law (2.1). Hence h and N are continuous functions of r, in particular 
~(1) - z. 

Darey's law gives for the flow in the regions A and B of layer I 

=-kO-~s~, (2.2) 

where ~" = Uv. 
In the regions A and B of layer III Darcy's law yields 

dh s = 7 kh-r- 
~r 

(2.3) 
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dh 
where - T ~ is the gradient of the potential and s equals - hv, h being 
negative. 

The filtration velocity through layer II is proportional to the difference 
of the potentials directly above and below this layer, hence in the regions 
A and B holds 

eq = ~ + Th -(T+l)z. (2.4) 

Here c is a constant called the resistance coefficient, q = q(r) is the fil- 
tration velocity through layer If, while U o z and - T(h-z) are the potentials 
above respectively below the semi pervious layer. 

The law of continuity yields in the regions A and B of layer I 

dT T 
d--r + -- = p - q' " (2.5) r 

and in layer Ill 

ds +s 
d-T r = q " (2.6) 

Here p is the precipitation per unit of area and per unit of time reduced 
by the part which evaporates or is consumed by the vegetation. 

Addition and integration with respect to r of (2.5) and (2.6) give the law 
of continuity applied to the layers I and II together. In layer I the equation 
reads 

+ s = �89 p r ,  ( 2 . 7 )  

i n  r e g i o n  B 

i bQ (2.8) ~- + s = ypr - ~. 
r 

In region A the precipitation on the surface inside the circle with radius 
r(r<-b) equals the amount of water passing the generator of a cylinder with 
radius r between y = U and y = h (2.7). In region B the precipitation is 
reduced by the part which is abstracted (2.8). 

In region C, where U equals z, (2.3) and (2,6) remain unaltered. 
Equation (2.4) changes into 

cq : ~ (h-z). (2.9) 

Equation (2.2) becomes an identity and (2.5) does not hold in region C, 
because an unknown amount of ground water is carried off by the shallow 
sea. Hence in region C (2.3), (2.6) and (2.9) are valid. 

3. Discussion of  the equations, boundary and initial conditions. 

A differential equation for h = h(r) will be derived in each of the three 
regions A, B and C seperately by eliminating the other dependent variables. 
First we determine the equation in region C. Elimination of q and s from 
(2.3), (2.6) and (2.9) gives a non linear differential equation of second 
order, 

d2h /dhk2 h dh h-z 
h - - + (  ) + - - - - +  - 0 ,  l < r < d .  ( 3 . 1 )  

dr 2 \~r/ r dr ck 
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In order to find an equation in region B we eliminate ~- and s ~from (2.2), 
(2.3) and (2.8), which yields 

drl 2 dh 2 bQ 

- � 8 9 1 8 9  = �89 (3.2) 
dr dr r 

When we integrate with respect to r, (3.2) changes into 

r .krl 2 + lvyh 2 + �89 o r  2 = 2bQ In T + D ,  (3.3) 

where D is an arbitrary constant. Another equation for U and h is derived 
by eliminating q and s from (2.3), (2.4) and (2.6), 

r d2h 

rl = -k~c ~ h  
[ d r  2 - -  + + -2 - , h  + 

Elimination of N from (3.3) and (3.4) yields 

d2h dh 2 h dh 1 
h--+( ~ +---- + {7h - (7+l)z 

dr 2 \ - ~ r /  r dr kyc 

~k_k V~ r _ 1 + 1 D +  2 b Q l n T  [ p r2  k3,h 2} = 0, b < r < l .  

(3.4) 

(3,5) 

A same procedure is applied in order to determine the equation for h = h(r) 
in region A. In this region (3.3) has the form 

krl 2 + kTh 2 + �89 2 = E,  (3.6) 

where E is a constant of integration. Equation (3.4) is also valid in A, 
hence from (3.4) and (3.6), 

d2h dh 2 h dh 1 
h --+ ( ~ +----+ {Th - (7+l)z 

dr 2 k~r/ r dr kTc 

+ 

(3 .7)  

In order to integrate (3. I), (3.5) and (3.7) we derive some initial and 
boundary conditions at the points r = d, r = I, r = b and r = 0. Since 
the equations are of second order, two conditions are required for each 
of the three regions. The conditions are given below and follow directly 
from considerations of continuity. 

At the, still unknown, edge of the bubble, r = d, the conditions are 

dh h = 0, h ~--~ = 0. (3.8) 

At r = I they are 

h(l+0)= h(10), ] 

] ddh r = dh (1+0) ~-~ (1- O), 
(3 .9)  
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and at r = b 

h(b+O) = h(b-O), 

~ r  (b+0) dh Q 1 ( 3 . 1 0 )  
= ~-~(b-0)  + kTh(b ) "  

F r o m  ( 3 . 1 0 )  we  s e e  t h a t  t he  s l o p e  of  the  b u b b l e  o f  f r e s h  w a t e r  h a s  a 
d i s c o n t i n u i t y  at  r = b,  c a u s e d  b y  the  a b s t r a c t i o n  o f  f r e s h  w a t e r .  

S i n c e  d is  u n k n o w n ,  a s e v e n t h  c o n d i t i o n  m u s t  be  o b t a i n e d  in  o r d e r  to  
d e t e r m i n e  the  s o l u t i o n .  T h i s  one  is f ound  b y  a p p l y i n g  the  l a w  of  c o n t i n u i t y  
to  a s m a l l  r e g i o n  in  the  n e i g h b o u r h o o d  of  r = 0,  

dh 
d r ( 0 )  = O. (3 .11)  

Finally we evaluate the constants of integration, D and E. 
Since ~(I) equals z, (3.3) yields 

D = kz 2 + kTh2(1) + �89 2. (3.12) 

The constant E is evaluated by substracting (3.3) from (3.6) at r = b and 
by substituting (3.12)~ 

i 2 b E = -kz 2 + --kTh 2(1) + ~Pl  + 2bQ in  
T I (3 .13)  

4. The abstract ion o f  water  in absence o f  a semi  perv ious  layer.  

When a semi pervious layer does not exist, the distinction between the 
layers I and III disappears. In this section the height of the phreatic sur- 
face, N, and the depth of the boundary of salt, h, are measured from the 
sea-level. We define the variable s(r) as (N-h)v, v is the filtration velocity. 

In the case with a semi pervious layer the bubble of fresh water is 
partly situated below the sea. In absence of this layer it is impossible 
that fresh water is present in the region r:,l, since a discontinuity in the 
hydrostatic pressure must be precluded. The abstraction of fresh water 
takes place in the same manner as has been described in section 2. 
Again 77 and h have to be continuous functions of r, particularly h(1) = N(1) = 
0, and the potential is independent of y within the bubble of fresh water. 

For y = N the potential equals ~ and for y = h it is - Th, hence for 
0 < r < l  we  h a v e  

r/ = - v h .  (4.;1) 

Darcy's law gives for 0<r<l 

s = - k ( n - h ) ~ r  . ( 4 .2 )  

The law of continuity, applied to a cylinder with radius r, yields in 
region A, 

s : �89 ( 4 . 3 )  

and in region B 

s = �89 - b QQ (4 .4 )  
r 
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B y  e l i m i n a t i n g ~ 7  a n d  s f r o m  ( 4 . 1 ) ,  ( 4 . 2 )  a n d  ( 4 . 3 )  we  o b t a i n  a d i f f e r e n t i a l  
e q u a t i o n  f o r  h ( r )  i n  r e g i o n  A .  In  r e g i o n  ]3 we o b t a i n  a s i m i l a r  e q u a t i o n  b y  
e l i m i n a t i n g  rl a n d  s f r o m  ( 4 . 1 ) ,  ( 4 . 2 )  a n d  ( 4 . 4 ) .  T h e s e  e q u a t i o n s  c a n  be  
i n t e g r a t e d  e a s i l y  a n d  the  c o n s t a n t s  Of i n t e g r a t i o n  c a n  be  d e t e r m i n e d  by  
c h o o s i n g  r = 1 a n d  r = b .  

The solution in region A becomes 

~�89 2 2) b_ 
h = - p(1 - -  r + 2bQ In I " 

?k(7+l) 
( 4 . 5 )  

and in region B 

6 

h = - / $ p ( l S - r  2) + 2bQ I n  r \/- 1 " 
v ,v~ (~+~ 

(4.6) 

5. The numerical  integration and the resul t s ,  

The three differential equations (3. I), (3.5) and (3.7), which describe 
the function h(r) for the case with a semi pervious layer have to be in- 
tegrated numerically. On that account we introduce the following dimension- 
less quantities, 

h r=r ~ _ _ b  ~ =  d "N 
- - T '  1 '  T '  T 

z k c  g = y ,  ~ -  1 , ~ = , 

_ 2bQ 5 = D ~ E �9 _ - -  , ,  

pl 2 ' k l  2 ' k l  2 J 

~. (5 .1 )  

Substitution of (5. I) into (3. I), (3.5) and (3.7) yields, after dropping the 
bars, 

h----d2h + (dh) 2 h dh h-z _ 
d r  z d-r + r ~'~ + c 0, l < r < d ,  ( 5 . 2 )  

h d h +  db + r ~ - F  + -  ~h - (~+ l )z  
d r  2 Tc 

) + ~ / D  + Q p  In  r - � 8 9  2 - Th 2 = 0, b < r < l ,  

[ d h ~  2 h dh 1 { h d2h  + ~a-~/ + + - -  Th - ( 7 + l ) z  
d r  2 r ~ 7c  

(5 .3 )  

(5 .4)  

+ k / E  - � 8 9  2"''- Th 2 } = O , O < r < b .  

The phreatic surface is a simple function of h and r according to (3.3) 
and (3.6), which read in the nondimensional form 

/?2 + Th 2 + � 8 9  2 = p Q  In  r + D, b < r < l ,  ( 5 . 5 )  
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1 2 r 7 2 +  Th 2 + -ff0r = E ,  0 < r < b .  

1 2 7  

(5.6) 

When h is known the phreatic surface can be evaluated easily. 
We have calculated the depth of the boundary of salt and the height of 

the phreatic surface for three values of Q, which is the abstracted part 
of the rainfall, 

2 6 
Q = 0, ~ 0.0375 and ~ ~- 0.1125, (5.7) 

and for three values of c, 

c = 0.375, 1.25 and 12.5. (5.8) 

For the remaining quantities we take 

3, = 0 . 0 2 4 ,  
b = 0 . 1 ,  
z = O. 0 0 7 5 ,  
p = O. 0 O 0 1 7 ,  

(5.9) 

which are, with c = 0.375, to a certain extent in agreement with the 
geological configuration of one of the Frisian islands in the Netherlands. 

In order to start the computations the singularity, which equation (5.2) 
possesses at r = d, because there h vanishes, is eliminated by the sub- 
stitution h 2 = - y. Then (5.2) changes into 

d 2 y  + 1 d y  2 ( z + Y ~ )  

dr 2 r-d-r + c = 0. 
(5.10) 

The pertaining initial conditions become 

y = O, d-~Y = O, r = d .  
d r  

(5.11) 

In principle the numerical integration can be carried out as follows. For 
each assumed value of the radius d(>l) of the bubble of fresh water we 
can integrate (5. I0) from r = d to r = i. At the latter point the end values 

dh 
of h and d'-r' which we obtain from the solution of (5. i0), are the initial 

values for the solution of (5.3), on account of the condition of continuity 
(3.9). The constant D in (5. 3) can be evaluated from the value h(1), making 
use of (3.12), which reads in the nondimensional form 

D = z 2 + Th 2(I)  + �89 p . (5.12) 

Then we can integrate (5.3) from r = I to r = b. 
dh 

At r = b the initial values of h and ~ for the solution of the equation 

dh 
(5.4) follow from the end values of h and ~ of the solution of (5.3) according 

to the nondimensional form of condition (3. I0), 

h ( b + O )  = h ( b - O )  , 

d h  Q p 
drd-~-h (b+0) = ~r-r (b-0) + 2Tbh(b i (5.13) 
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The constant E can be evaluated from (3.13), which becomes in dimen- 
sionless form 

E = z 2 + Th 2 (i) + �89 + Qp In b. (5.14) 

Now we can integrate (5.4) from r = b to the centre of the island. 
It is the intention to carry out the integration to r = 0 and to determine 

such a value for d that condition (3.11) is satisfied. However equation 
(5.4) has a singularity at r = 0. In order to avoid this complication we 
integrate (5.4) from r = b to r : r I = I0"4. Now the radius of the bubble 
must be chosen in such a way that 

d h 
(rl) = 0. (5.15) 

dr 

As method for the numerical integration we used Runge - Kutta's method. 
The accuracy of it is difficult to discuss. Therefore we compared some 
results of this method with the results obtained by the accurate method of 
Nordsieck [3], which needed however ten times as much computer time. 

First we determined the behaviour of the solutions of the differential 
equations for some assumed values of the radius d of the bubble of fresh 
water. It appeared that for values which were larger than the actual 
radius, the function h(r) became strongly negative for decreasing values 
of r. By this the argument of the square root in (5.3), containing the 
term - ?h 2, became negative. For values of d which were smaller than 
the actual one, the boundary of salt tended to zero in the region A or B. 
In both cases we could not continue the integration, It turned out that there 
was an extremely small i~terval, in which we had to choose d in order to 
be able to reach the point r = r I with our integration procedure. The 
length of tlhis interval varied from 5. 10 -3 for c = 12.5 and Q = 0 to about 

6 
10 -l~ for c = 0.375 and Q - 17~" 

For the cases with c = 0.375 the solutions were so instable with respect 
to variations of d that we were not able to satisfy condition (5.15). It 
turned out that we could not obtain accurate values for the boundary of 
salt in the region rz<r<0.5. The equations for these cases had also to 
be integrated in the direction of increasing values of r, starting with an 
assumed value for h(r I) and condition (5.15). It appeared that the solutions 
presented the same unstable behavior with respect to variations of h(rl) 
as the solutions, obtained from the integration in the direction of decreasing 
r, did with respect to variations of d. Only accurate values for h could 
be evaluated in the region r I<r<0.75. 

We obtained accurate values for h(r) from both directions of integrations 
in the interval 0.5<r<0.75. It appeared that the values agreed up to six 
significant digits in this interval, hence the boundary of salt was obtained 
by pasting the solutions together. 

The actual value of d and the actual value of h(rz) for the case that we 
integrated in reversed direction, where evaluated by a method of iteration, 
which could be developed, when we used the mentioned behaviour of the 
solutions of the differential equations. 

We found that even in the most unstable cases the actual radius of the 
bubble of fresh water and the actual depth of the boundary of salt, which 
we evaluated with Runge - Kutta's method and Nordsieek's method agreed 
up to at least four significants digits. From this we conclude that Runge 
- Kutta's method is a reliable one for this problem. The reason for this 
unexpected reliability follows perhaps from the fact that the real boundary 
of salt is very smooth. When the initial value of d was different from 
the exact one, the results of both methods did not agreed at all. 
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Fig .  5 . 1 .  T h e  pbxea t i c  su r faces  and  the  bounda r i e s  o f  sa l t  for c = 1 2 . 5  a n d  c = 0 .  

B e s i d e s  f o r  t h e  v a l u e s  of  c m e n t i o n e d  in  ( 5 . 8 )  h a n d  ~] w e r e  e v a l u a t e d  
f o r  t h e  c a s e  o f  n o n  e x i s t a n c e  of  the  s e m i  p e r v i o u s  l a y e r s ,  d e n o t e d  by  g = 
0. We r e m a r k  t h a t  the  c a s e  c t e n d s  to z e r o  i s  n o t  i d e n t i c a l  to  t h i s  o n e .  
The phreatic surface and the boundary of salt are known explieitely in 
analytic form from section 4. 

It turned out that the bubbles belonging to c = 0.375 and c = I. 25 dif- 
fered only slightly from the bubble of fresh water with c = 0. Hence only 
the results for c = 12.5 and c = 0 are plotted in fig. 5. i. 
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